教員紹介: 谷 元洋


出身: 京都府京都市

専門分野: 脂質生化学、酵母分子遺伝学


略歴

1992年3月 京都市立紫野高等学校卒業

1997年3月 九州大学農学部卒業

1999年3月 九州大学大学院農学研究院修士課程修了

1999年4月 小野薬品工業株式会社 水無瀬総合研究所勤務

2000年4月 九州大学大学院生物資源環境科学府博士後期課程編入学

2001年4月 日本学術振興会特別研究員 (DC2)

2003年3月 博士 (農学)取得

2003年4月 北海道大学大学院薬学研究科 (日本学術振興会特別研究員PD)

2005年10月 米国サウスカロライナ医科大学

2006年4月 日本学術振興会海外特別研究員

2007年2月 九州大学高等研究機構 特任准教授

2011年4月 九州大学大学院理学研究院化学部門 准教授

2023年10月 岐阜大学応用生物科学部 教授


学術賞

2021年 大隅基礎科学創成財団 酵母コンソーシアムフェロー称号授与

2013年 長瀬科学技術振興財団 長瀬研究振興賞

2010年 文部科学大臣表彰 若手科学者賞

2010年 日本生化学会九州支部学術奨励賞

2006年 The 41st Annual South Eastern Regional Lipid Conference,
               Postdoctral Trainee Travel Award


担当科目

生物化学IV、生物化学実験、生物化学特論II、自然科学総合実験、基礎科学実習


競争的資金獲得状況

2023年 科研費 挑戦的研究(萌芽) (代表者)

2023年 公益財団法人 水谷糖質科学振興財団 研究助成 (代表者)

2023年 科研費 基盤研究(B) (分担者)

2021年 公益財団法人 大隅基礎科学創成財団 研究助成 (代表者)

2021年 科研費 基盤研究(B) (代表者)

2020年 公益財団法人 野田産業科学研究所 研究助成 (代表者)

2018年 公益財団法人 発酵研究所 一般研究助成 (代表者)

2018年 科研費 基盤研究(B) (代表者)

2017年 九州大学 QRプログラム わかばチャレンジ (代表者)

2016年 革新的先端研究開発支援事業 AMED-CREST (分担者)

2015年 科研費 基盤研究(B) (分担者)

2015年 公益財団法人 アサヒグループ学術振興財団 学術研究助成 (代表者)

2014年 科研費 基盤研究(C) (代表者)

2013年 公益財団法人 長瀬科学技術振興財団 研究助成 (代表者)

2013年 公益財団法人 野田産業科学研究所 奨励研究助成 (代表者)

2012年 公益財団法人コスメトロジー研究振興財団 研究助成 (代表者)

2010年 公益財団法人 農芸化学研究奨励会 研究奨励金 (代表者)

2010年 公益財団法人 内藤記念科学振興財団 特定研究助成金 (代表者)

2009年 科研費 若手研究(B) (代表者)

2007年 科研費 若手研究(スタートアップ) (代表者)

2006年 日本学術振興会 海外特別研究員研究費 (代表者)

2003年 日本学術振興会 特別研究員奨励費 (代表者)

2001年 日本学術振興会 特別研究員奨励費 (代表者)


研究業績 (原著論文)

  1. Kono Y, Ishibadhi Y, Fukuda S, Higuchi T, and *Tani M. Simultaneous structural replacement of the sphingoid long-chain base and sterol in budding yeast. FEBS J. in press
  2. Fukuda S, Kono Y, Ishibadhi Y, Tabuchi M, and *Tani M. Impaired biosynthesis of ergosterol confers resistance to complex sphingolipid biosynthesis inhibitor aureobasidin A in a PDR16-dependent manner. Sci Rep. 2023 ;13: 11179.
  3. Koga A, Takayama C, Ishibashi Y, Kono Y, Matsuzaki M, and *Tani M. Loss of tolerance to multiple environmental stresses due to limitation of structural diversity of complex sphingolipids. Mol Biol Cell 2022 ;33: ar105
  4. Takayama C, Koga A, Skamoto R, Arita N, and *Tani M. Involvement of the mitochondrial retrograde pathway in dihydrosphingosine-induced cytotoxicity in budding yeast. Biochem Biophys Res Commun. 2022 ;605: 63-69.
  5. Ishino Y, Komatsu N, Sakata K, Yoshikawa D, Tani M, Maeda T, Morishige K, Yoshizawa K, Tanaka N, and *Tabuchi M. Regulation of sphingolipid biosynthesis in the endoplasmic reticulum via signals from the plasma membrane in budding yeast. FEBS J. 2022 ;289: 457-472.
  6. Urita A, Ishibashi Y, Kawaguchi R, Yanase Y, and *Tani M. Crosstalk between protein kinase A and the HOG pathway under impaired biosynthesis of complex sphingolipids in budding yeast. FEBS J. 2022 ;289: 766-786.
  7. Kurauchi T, Matsui K, Shimasaki T, Ohtsuka H, Tsubouchi S, Ihara K, Tani M, and *Aiba H. Identification of sur2 mutation affecting the lifespan of fission yeast. FEMS Microbiol Lett. 2021 ;368:fnab070.
  8. Toda T, Urita A, Koga A, Takayama C, and *Tani M. ROS-mediated synthetic growth defect caused by impaired metabolism of sphingolipids and phosphatidylserine in budding yeast. Biosci Biotechnol Biochem. 2020 ;84: 2529-2532.
  9. Otsu M, Toume M, Yamaguchi Y, and *Tani M. Proper regulation of inositolphosphorylceramide levels is required for acquirement of low pH resistance in budding yeast. Sci Rep. 2020 ;10:10792.
  10. Arita N, Sakamoto R, and *Tani M. Mitochondrial reactive oxygen species-mediated cytotoxicity of intracellularly accumulated dihydrosphingosine in the yeast Saccharomyces cerevisiae. FEBS J. 2020 ;287: 3427-3448.
  11. Tanaka S, and *Tani M. Mannosylinositol phosphorylceramides and ergosterol coordinately maintain cell wall integrity in the yeast Saccharomyces cerevisiae. FEBS J. 2018 ;285: 2405-2427. (Editor’s Choice)
  12. Yamaguchi Y, Katsuki Y, Tanaka S, Kawaguchi R, Denda H, Ikeda T, Funato K, and *Tani M. Protective role of the HOG pathway against the growth defect caused by impaired biosynthesis of complex sphingolipids in yeast Saccharomyces cerevisiae. Mol Microbiol. 2018 ;107: 363-386.
  13. Katsuki Y, Yamaguchi Y, and *Tani M. Overexpression of PDR16 confers resistance to complex sphingolipid biosynthesis inhibitor aureobasidin A in yeast Saccharomyces cerevisiae. FEMS Microbiol Lett. 2018 ;365: fnx255.
  14. Toume M, and *Tani M. Yeast lacking the amphiphysin family protein Rvs167 is sensitive to disruptions in sphingolipid levels. FEBS J. 2016 ;283: 2911-2928.
  15. Miyata N, Miyoshi T, Yamaguchi T, Nakazono T, Tani M, and *Kuge O. VID22 is required for transcriptional activation of the PSD2 gene in the yeast Saccharomyces cerevisiae. Biochem J. 2015 ; 472(3): 319-328.
  16. *Tani M, and Toume M. Alteration of complex sphingolipid composition and its physiological significance in yeast Saccharomyces cerevisiae lacking vacuolar ATPase. Microbiology-Sgm 2015 ;161: 2369-2383.
  17. Sakakibara K, Eiyama A, Suzuki SW, Sakoh-Nakatogawa M, Okumura N, Tani M, Hashimoto A, Nagumo S, Kondo-Okamoto N, Kondo-Kakuta C, Asai E, Kirisako H, Nakatogawa H, Kuge O, Takao T, Ohsumi Y, and *Okamoto K. Functional link between Atg32-mediated mitophagy and phospholipid methylation. EMBO J. 2015 ;34(21): 2703-2719.
  18. Ban-Ishihara R, Tomohiro-Takamiya S, Tani M, Baudier J, *Ishihara N, and *Kuge O. COX assembly factor ccdc56 regulates mitochondrial morphology by affecting mitochondrial recruitment of Drp1. FEBS Lett. 2015 ;589(20): 3126-3132.
  19. Watanabe T, Tani M, Ishibashi Y, Endo I, Okino N, and *Ito M. Ergosteryl-β-glucosidase (Egh1) involved in sterylglucoside catabolism and vacuole formation in Saccharomyces cerevisiae. Glycobiology. 2015 ;25(10):1079-1089.
  20. Morimoto Y, and *Tani M. Synthesis of mannosylinositol phosphorylceramides is involved in maintenance of cell integrity of yeast Saccharomyces cerevisiae. Mol Microbiol. 2015 ;95(4): 706-722.
  21. Toume M, and *Tani M. Change in activity of serine palmitoyltransferase affects sensitivity to syringomycin E in yeast Saccharomyces cerevisiae. FEMS Microbiol Lett. 2014 ;358(1): 64-71.
  22. *Uemura S, Shishido F, Tani M, Mochizuki T, Abe F, and Inokuchi J. Loss of hydroxyl groups from the ceramide moiety can modify the lateral diffusion of membrane proteins in Saccharomyces cerevisiae. J Lipid Res. 2014 ;55: 1343-1356.
  23. *Tani M, and Kuge O. Involvement of Sac1 phosphoinositide phosphatase in metabolism of phosphatidylserine in the yeast Saccharomyces cerevisiae. Yeast. 2014 ;31: 145-158.
  24. *Tani M, and Kuge O. Involvement of complex sphingolipids and phosphatidylserine in endosomal trafficking in yeast Saccharomyces cerevisiae. Mol Microbiol. 2012 ;86(5): 1262-1280.
  25. Nakase M, Tani M, and *Takegawa K. Expression of budding yeast IPT1 produces mannosyldiinositolphosphorylceramide in fission yeast and inhibits cell growth. Microbiology-Sgm. 2012 ;158: 1219-1228.
  26. *Tani M, and Kuge O. Hydroxylation state of fatty acid and long-chain base moieties of sphingolipid determine the sensitivity to growth inhibition due to AUR1 repression in Saccharomyces cerevisiae. Biochem Biophys Res Commun. 2012 ;417(2): 673-678.
  27. Kuroda T, Tani M, Moriguchi A, Tokunaga S, Higuchi T, Kitada S, and *Kuge O. FMP30 is required for the maintenance of a normal cardiolipin level and mitochondrial morphology in the absence of mitochondrial phosphatidylethanolamine synthesis. Mol Microbiol. 2011 ;80(1): 248-265.
  28. Nakagawa T, Tani M, Sueyoshi N, and *Ito M. The mucin box and signal/anchor sequence of rat neutral ceramidase recruit bacterial sphingomyelinase to the plasma membrane. Biosci Biotechnol Biochem. 2011 ;75(5): 987-990.
  29. *Tani M, and Kuge O. Requirement of a specific group of sphingolipid-metabolizing enzyme for growth of yeast Saccharomyces cerevisiae under impaired metabolism of glycerophospholipids. Mol Microbiol. 2010 ;78: 395-413.
  30. *Tani M, and Kuge O. Defect of synthesis of very long-chain fatty acids confers resistance to growth inhibition by inositol phosphorylceramide synthase repression in yeast Saccharomyces cerevisiae. J Biochem. 2010 ;148: 565-571.
  31. Nakase M, Tani M, Morita T, Kitamoto-K H, Kashiwazaki J, Nakamura T, Hosomi A, Tanaka N, and *Takegawa K. Mannosylinositol phosphorylceramide is a major sphingolipid component and is required for proper localization of plasma membrane proteins in Schizosaccharomyces pombe. J Cell Sci. 2010 ;123: 1578-1587.
  32. *Tani M, and Kuge O. Sphingomyelin synthase 2 is palmitoylated at the COOH-terminal tail, which is involved in its localization in plasma membranes. Biochem Biophys Res Commun. 2009 ;381: 328-332.
  33. Inoue T, Okino N, Kakuta Y, Hijikata A, Okano H, M. Goda H, Tani M, Sueyoshi N, Kambayashi K, Matsumura H, Kai Y, and *Ito M. Mechanistic insights into the hydrolysis and synthesis of ceramide by neutral ceramidase. J Biol Chem. 2009 ;284: 9566-9577.
  34. Hayashi Y, Okino N, Kakuta Y, Shikanai T, Tani M, Narimatsu H, and *Ito M. Klotho-related protein is a novel cytosolic neutral β–glycosylceramidase. J Biol Chem. 2007 ;282: 30889-30900.
  35. Ito K, Anada Y, Tani M, Ikeda M, Sano T, *Kihara A, and Igarashi Y. Lack of sphingosine 1-phosphate-degrading enzymes in erythrocytes. Biochem Biophys Res Commun.
  36. Tani M, and *Hannun YA. Analysis of membrane topology of neutral sphingomyelinase 2. FEBS Lett. 2007 ;581: 1323-1328.
  37. Tani M, and *Hannun YA. Neutral sphingomyelinase 2 is palmitoylated on multiple cysteine residues: Role of palmitoylation in subcellular localization. J Biol Chem. 2007 ;282:10047-10056.
  38. Wu BX, Snook CF, Tani M, Büllesbach EE, and *Hannun YA. Large-scale purification and characterization of recombinant Pseudomonas ceramidase: Regulation by calcium. J Lipid Res. 2007 ;48:600-608.
  39. Tani M, Kihara A, and *Igarashi Y. Rescue of cell growth by sphingosine with disruption of lipid microdomain formation of Saccharomyces cerevisiae deficient in sphingolipid biosynthesis. Biochem J. 2006 ;394:237-242.
  40. Tani M, Igarashi Y, and *Ito M. Involvement of neutral ceramidase in ceramide metabolism at the plasma membrane and in extracellular milieu. J Biol Chem. 2005 ;280:36592-36600.
  41. Tani M, Sano T, Ito M, and *Igarashi Y. Mechanisms of sphingosine and sphingosine 1-phosphate generation in human platelets. J Lipid Res. 2005 ;46:2458-2467.
  42. Hwang Y, Tani M, Nakagawa T, Okino N, and *Ito M. Subcellular localization of human neutral ceramidase expressed in HEK293 cells. Biochem Biophys Res Commun. 2005 ;331:37-42.
  43. Nakagawa T, Morotomi A, Tani M, Komori H, Sueyoshi N, and *Ito M. C18:3-GM1a induces apoptosis in Neuro2a cells: enzymatic remodeling of fatty acyl chains of glycosphingolipids. J Lipid Res. 2005 ;46:1103-1112.
  44. Yoshimura Y, Tani M, Okino N, Iida H, and *Ito M. Molecular cloning and functional analysis of zebrafish neutral ceramidase. J Biol Chem. 2004 ;279:44012-44022.
  45. Tani M, Okino N, Sueyoshi N, and *Ito M. Conserved amino acid residues in the COOH-terminal tail are indispensable for the correct folding and localization, and enzyme activity of neutral ceramidase. J Biol Chem. 2004 ;279:29351-29358.
  46. Monjusho H, Okino N, Tani M, Maeda M, Yoshida M, and *Ito M. A neutral ceramidase homologue of Dictyostelium discoideum exhibits an acidic pH optimum. Biochem J. 2003 ;376:473-479.
  47. Tani M, Iida H, and *Ito M. O-glycosylation of mucin-like domain retains the neutral ceramidase on the plasma membranes as a type II integral membrane protein. J Biol Chem. 2003 ;278:10523-10530.
  48. Yoshimura Y, Okino N, Tani M, and *Ito M. Molecular cloning and characterization of a secretory neutral ceramidase from Drosophila melanogaster. J Biochem. 2002 ;132:229-237.
  49. Mitsutake S, Tani M, Okino N, Mori K, Ichinose S, Omori A, Iida H, Nakamura T, and *Ito M. Purification, characterization, molecular cloning, and subcellular distribution of neutral ceramidase of rat kidney. J Biol Chem. 2001 ;276:26249-26259.
  50. Rommiti E, Meacci E, Tani M, Nuti F, Farnararo M, Ito M, and *Bruni P. Neutral/alkaline and acid ceramidase activities are actively released by murine endothelial cells. Biochem Biophys Res Commun. 2000 ;275:746-751.
  51. Tani M, Okino N, Mori K, Tanigawa T, Izu H, and *Ito M. Molecular cloning of the full-length cDNA encoding mouse neutral ceramidase. J Biol Chem. 2000 ;275:11229-11234.
  52. Tani M, Okino N, Mitsutake S, and *Ito M. Purification and characterization of a neutral ceramidase from mouse liver. J Biol Chem. 2000 ;275:3462-3468.
  53. Nakagawa T, Tani M, Kita K, and *Ito M. Preparation of fluorescence-labeled GM1 and sphingomyelin by the reverse hydrolysis reaction of sphingolipid ceramide N-deacylase as substrates for assay of sphingolipid-degrading enzymes and for detection sphingolipid-binding proteins. J Biochem. 1999 ;126:604-611.
  54. Tani M, Okino N, Mitsutake S, and *Ito M. Specific and sensitive assay for alkaline and neutral ceramidases involving C12-NBD-ceramide. J Biochem. 1999 ;125:746-749.
  55. Tani M, Kita K, Komori H, Nakagawa T, and *Ito M. Enzymatic synthesis of omega-amino-ceramide: Preparation of a sensitive fluorescent substrate for ceramidase. Anal Biochem. 1998 ;263:183-188.
  56. Okino N, Tani M, Imayama S, and *Ito M. Purification and characterization of a novel ceramidase from Pseudomonas aeruginosa. J Biol Chem. 1998 ;273:14368-14373.